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We consider complex Jacobi matrices G which can be decomposed in the form
G=J+C, where J is a real Jacobi matrix and C is a complex Jacobi matrix whose
entries are uniformly bounded. We prove that the determinacy of the operator
defined by G is equivalent to that of J. From this we deduce that the determinacy
of G is equivalent to the coincidence between the domains of definition of the
operators G and its adjoint G*. � 2000 Academic Press

1. INTRODUCTION

In this paper, we study operators given by a tridiagonal matrix

G=\
b0

a1

0
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b

} } }
} } }
} } }
. . .+ (1)

with an # C"[0], and bn # C, which is called a (complex) Jacobi matrix.
During the last few years the properties of operators connected with infinite
matrices with complex entries have attracted some attention (see [2�7]).
This is due in part to their application to the study of the convergence of
continued fractions, Pade� , and Hermite-Pade� approximations.
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In [9, p. 99] the notion of determinacy of a Jacobi matrix G with complex
entries was introduced. By analogy with the real case (see [1, p. 19]), the
matrix (1) is determinate if there exists a z # C such that

:
n�1

| pn(z)|2=� or :
n�1

|qn(z)|2=�, (2)

where pn(z) and qn(z) are the solutions of the recurrence relations

an+1 yn+1+bn yn+an yn&1=zyn , n=0, 1, 2, ... (a0=1), (3)

with the initial conditions

{
p&1(z)=0,

q0(z)=0,

p0(z)=1,

q1(z)=
1
a1

.
(4)

A sufficient condition for the determinate case to hold (see [5, Lemma 1])
is that either

:
n�0

1
|an |

=� or :
n�0

|bn |
|an an+1 |

=�. (5)

The concept of determinacy was used in [5] to prove the convergence of
the continued fraction (Pade� approximants) associated with (1). One of the
aims of this paper is to clarify the ``operator'' meaning of the determinacy
condition (2) for complex Jacobi matrices.

The infinite matrix G defines, by the usual operation of a matrix on a
vector, an operator on the linear subspace of l2 formed by all vectors
which have a finite number of components different from zero. Let G also
denote the closure of this operator in l2 and G* its adjoint. By D( } ), we
denote the domain of definition of the operator ( } ). In the case when
an # R"[0] and bn # R (that is, for real Jacobi matrices), it is known (see
[1, pp. 138�141; 8, p. 76]) that the determinate case holds if and only if

D(G)=D(G*). (6)

Taking into consideration the property of symmetry of a real Jacobi
matrix, (6) means that the closed operator G is selfadjoint.

Here, we prove that for a large class of complex Jacobi matrices, deter-
minacy and property (6) remain equivalent. More precisely, we have

Theorem 1. If the complex Jacobi matrix (1) admits the decomposition

G=J+C, (7)
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where J is a real Jacobi matrix and C has uniformly bounded complex
entries, then (2) and (6) are equivalent.

Theorem 1 is a direct consequence of Theorem 2.

Theorem 2. If the complex Jacobi matrix (1) admits the decomposition
(7) where J is a real Jacobi matrix and C has uniformly bounded complex
entries, then the determinacy of the matrices G and J are equivalent.

The fact that the determinacy of J implies that of G was proved in
Lemma 3 of [5]. Some sufficient conditions for the reversed statement were
also given (see Lemma 4 and Remark 1 of [5]), whereas the proof that it
is true in general was posed as an open problem. We present a proof of this
fact in the next section. Here we deduce Theorem 1 from Theorem 2.

Proof of Theorem 1. Since C defines a bounded operator on all l2, we
have that D(C)=D(C*)=l2. Because of (7), it follows that D(G)=D(J)
and D(G*)=D(J*). Hence, D(G)=D(G*) if and only if D(J)=D(J*).
But, as was mentioned above, in the case of real Jacobi matrices, this is
equivalent to the determinacy of J which in turn by Theorem 2 is equiv-
alent to the determinacy of G. K

2. PROOF OF THEOREM 2

Before proceeding with the proof of Theorem 2, let us make some reduc-
tions and introduce new notation. A direct consequence of the Theorem of
Invariability (see [9, p. 96]), is that a bounded perturbation on the coef-
ficients bn does not alter the condition of determinacy of a Jacobi matrix.
Since the coefficients of C (and the imaginary parts of the coefficients of G)
are bounded, there is no loss of generality if we restrict our attention to the
case when the coefficients bn of G are real numbers and they coincide with
the corresponding coefficients of J. Thus, the coefficients of G are an # C"[0]
and bn # R, while the corresponding ones of J are a~ n # R"[0] and bn .

By p (k)
n (z), k=0, 1, ..., we denote the normalized associated polynomial

of type k and degree n relative to (3). Such polynomials are defined as the
solution of

an+k+1 p (k)
n+1(z)=(z&bn+k) p (k)

n (z)&an+k p (k)
n&1(z), n�0,

(8)
p (k)

&1(z)=0, p (k)
0 (z)=1�ak .

Notice that p (0)
n (z)= pn(z) and p (1)

n&1(z)=qn(z), since we took a0=1.
Analogously, we denote by p~ (k)

n (z) the associated polynomial of type k and
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degree n which is the solution of (8) when we replace an by a~ n . These poly-
nomials correspond to J. Finally, let

P(k)
n (z)=ak } } } an+k p (k)

n (z) and P� (k)
n (z)=a~ k } } } a~ n+k p~ (k)

n (z)

be the corresponding monic polynomials. For future reference, we would
like to underline that the polynomials P� (k)

n (z) satisfy the recurrence
relations

P� (k)
n+1(z)=(z&bn+k) P� (k)

n (z)&a~ 2
n+k P� (k)

n&1(z), n�0,
(9)

P� (k)
&1(z)=0, P� (k)

0 (z)=1.

Let us assume that J is indeterminate. Because of the Theorem of
Invariability this is equivalent to

:
n�1

| p~ n(0)| 2<+� and :
n�1

| p~ (1)
n (0)| 2<+�. (10)

We must prove that relations (10) are also true at z=0 for the polynomials
pn(z) and p (1)

n (z). We will prove this using a relation between the polyno-
mials p~ n(z), p~ (1)

n (z) and pn(z), p (1)
n (z). In order to simplify the notation, in

the sequel we denote

p (k)
n (0)= p (k)

n , P (k)
n (0)=P (k)

n , p~ (k)
n (0)= p~ (k)

n , P� (k)
n (0)= P� (k)

n .

The following relation is the key in the proof. For all n�2, we have

p (m)
n =

P� (m)
n

am } } } am+n
+ :

n

k=2

a~ 2
m+k&1&a2

m+k&1

am+k&1

P� (m+k)
n&k

am+k } } } am+n
p (m)

k&2 . (11)

Fix m, the equality can be proved by induction on the parameter n. Using
(8) it is easy to verify that (11) holds for n=2 and n=3. Let us assume
that (11) is true for all values of the parameter up to n&1, n�4, we will
show that it also holds for n.

Using (8) with z=0, we have

p (m)
n =&

bm+n&1

am+n
p (m)

n&1&
a~ 2

m+n&1

am+n&1 am+n
p (m)

n&2

+
a~ 2

m+n&1&a2
m+n&1

am+n&1

1
am+n

p (m)
n&2 . (12)

Substituting in the first two terms to the right of (12) the expressions
given by (11) for n&2 and n&1 in place of n, and rearranging the sums
conveniently, we obtain
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p (m)
n =

&bm+n&1P� (m)
n&1&a~ 2

m+n&1 P� (m)
n&2

am } } } am+n

+ :
n&2

k=2

a~ 2
m+k&1&a2

m+k&1

am+k&1

&bm+n&1 P� (m+k)
n&k&1&a~ 2

m+n&1 P� (m+k)
n&k&2

am+k } } } am+n
p (m)

k&2

+
a~ 2

m+n&2&a2
m+n&2

am+n&2

&bm+n&1P� (m+n&1)
0

am+n&1am+n
p (m)

n&3

+
a~ 2

m+n&1&a2
m+n&1

am+n&1

1
am+n

p (m)
n&2 .

On account of (9), this formula reduces to (11).

Proof of Theorem 2. If the first condition in (5) takes place, it is easy
to conclude that both G and J are determinate (Lemmas 1 and 4 of [5]).
Therefore, we may assume that

:
n�0

1
|an |

<�. (13)

In particular, limn � � |an |=�. Under this condition, from the bounded-
ness of the coefficients in C, it is easy to check that there exists a constant
M1>0 such that

}a~
2
k&a2

k

ak }=|a~ k&ak | |a~ k+ak |
|ak |

�M1<�, k=0, 1, ... . (14)

On the other hand, from (13) and the boundedness of the coefficients in C,
it follows that for any n # 0, 1, ... and k=0, ..., n

}a~ k } } } a~ n

ak } } } an }� `
n

j=k \1+ } a~ j&a j

aj }+� lim
n � �

`
n

j=0
\1+ } a~ j&aj

aj }+�M2<�.

(15)

Let m # 0, 1, ..., n=2, 3, ... and k=2, ..., n. Set

:(m)
n, k=

a~ 2
m+k&1&a2

m+k&1

am+k&1

P� (m+k)
n&k

am+k } } } am+n
, ; (m)

n =
P� (m)

n

am } } } am+n
.

With this notation, we can write (11) as

p (m)
n =; (m)

n + :
n

k=2

: (m)
n, k p (m)

k&2 , n�2. (16)
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We are particularly interested in this formula for m=0, 1. On account of
(16), it is known (see [1, Lemma 1.3.2]) that from

:
n�2

|; (m)
n | 2<+� and :

n�2

:
n

k=2

|: (m)
n, k |2<+� (17)

it follows that �n�1 | p (m)
n |2<+�. Thus in order to conclude the proof it

remains to verify that (17) holds for m=0, 1.
From (15), it follows that

|; (m)
n |= } a~ m } } } a~ m+n

am } } } am+n } | p~ (m)
n |�M2 | p~ (m)

n |.

From (10), it follows that �n�2 |; (m)
n |2<+�, m=0, 1. On the other

hand, from (14) and (15), we have

|: (m)
n, k |= } a~

2
m+k&1&a2

m+k&1

am+k&1 } } a~ m+k } } } a~ m+n

am+k } } } am+n } | p~ (m+k)
n&k |�M1M2 | p~ (m+k)

n&k |.

Therefore, making use of the well known formula (see, for example, formula
(17) in [5])

( p~ (1)
m+n&1 p~ (0)

m+k&1& p~ (0)
m+n p~ (1)

m+k&2(z))= p~ (m+k)
n&k (z),

and (10), it follows that

:
n�2

:
n

k=2

|: (m)
n, k | 2�M1M2 :

n�2

:
n

k=2

| p~ (1)
m+n&1 p~ (0)

m+k&1& p~ (0)
m+n p~ (1)

m+k&2 |2

�2M1M2 \ :
n�2

| p~ (1)
m+n&1 |2 :

n

k=2

| p~ (0)
m+k&1 |2

+ :
n�2

| p~ (0)
m+n |2 :

n

k=2

| p~ (1)
m+k&2 |2+

�4M1M2 :
n�0

| p~ (0)
n |2 :

k�0

| p~ (1)
k |2<+�.

The theorem is proved. K
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